header-bg

National Cancer Institute (NCI)

Identification of natural drugs that burn fat

Project

Identification of natural drugs that burn fat 

Project Details

Sympathetic neurons have a wide range of physiological functions and their hypoactivity contributes to obesity and diabetes, among other syndromes. Sympathomimemic drugs rescue this deficiency but this drug class, mostly composed of brain-penetrant amphetamines and adrenergic agonists, is both cardiotoxic and highly controlled. Our recent publication puts forward new class of drugs  named Sympathofacilitators that do not enter the brain and have an anti-obesity and cardio-neutral effect in vivo. The first-in-class was published in Mahu I et al Domingos, Cell Metabolism 2020; Fig. 3C of this paper demonstrated a neuro-facilitatory effect, rather than neuro-excitatory one. 

This new class is in needed of novel chemical entities which can be screened in vitro on cultured iPSC-derived sympathetic neurones. The screen would be based on fluorescent readouts of calcium activity reporter, screening for a facilitation of responses to acetylcholine (similar to Fig. 3C of Mahu I et al). 

The prospect of identifying natural compounds that have a Sympathofacilitatory effect is tangible when performed in collaboration with the laboratory of Barry O’Keefe. The student will learn lab how to grow and scale-up iPSC-derived sympathetic neurones in Domingos lab, and optimize an in vitro assay based on Fig. 3C. The student will then transfer this knowledge to the lab of Barry O’Keefe where the screen will be performed using a fluorescent plate reader, robotic liquid handling, and a library of natural compounds.

Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Discovering the hidden rules of tissue-specific responses to inflammation

Project

Discovering the hidden rules of tissue-specific responses to inflammation

Project Details

This collaboration between the Altan-Bonnet (NCI), Buckley and Coles (Oxford) labs addresses how organs generate distinct inflammatory responses despite sharing common components like immune cells, fibroblasts, and the extracellular matrix. In collaboration with additional teams from the Netherlands, and Canada, we aim to uncover the molecular, cellular, and tissue-level rules governing organ-specific inflammation.

We hypothesize that (1) organ context and cellular experience shape the perception of inflammatory signals, and (2) organ-specific hierarchies integrate responses into coordinated outcomes. Using a data-driven approach, we will combine ex vivo and in silico models of mouse and human tissues to explore these mechanisms. High-throughput robotics will generate diverse tissue models with varying sensitivities to infection or immunopathology. Multimodal datasets from these models will be analyzed using machine learning to build computational models, to guide iterative cycles of discovery.

This project will revolutionize tissue biology by creating a unified framework for understanding tissue-specific inflammation, paving the way for new treatments. We are seeking researchers with expertise in bioengineering, computer science, or immunology to join this interdisciplinary effort.

Project keywords: immunology, systems biology, biomedical engineering. 

Institute or Center
University
7
Project Listed Date

Discovering the hidden rules of tissue-specific responses to inflammation

Project

Discovering the hidden rules of tissue-specific responses to inflammation

Project Details

This collaboration between the Altan-Bonnet (NCI), Buckley and Coles (Oxford) labs addresses how organs generate distinct inflammatory responses despite sharing common components like immune cells, fibroblasts, and the extracellular matrix. In collaboration with additional teams from the Netherlands, and Canada, we aim to uncover the molecular, cellular, and tissue-level rules governing organ-specific inflammation.

We hypothesize that (1) organ context and cellular experience shape the perception of inflammatory signals, and (2) organ-specific hierarchies integrate responses into coordinated outcomes. Using a data-driven approach, we will combine ex vivo and in silico models of mouse and human tissues to explore these mechanisms. High-throughput robotics will generate diverse tissue models with varying sensitivities to infection or immunopathology. Multimodal datasets from these models will be analyzed using machine learning to build computational models, to guide iterative cycles of discovery.

This project will revolutionize tissue biology by creating a unified framework for understanding tissue-specific inflammation, paving the way for new treatments. We are seeking researchers with expertise in bioengineering, computer science, or immunology to join this interdisciplinary effort.

Project keywords: immunology, systems biology, biomedical engineering. 

Category
Institute or Center
University
7
Project Listed Date

Discovering the hidden rules of tissue-specific responses to inflammation

Project

Discovering the hidden rules of tissue-specific responses to inflammation

Project Details

This collaboration between the Altan-Bonnet (NCI), Buckley and Coles (Oxford) labs addresses how organs generate distinct inflammatory responses despite sharing common components like immune cells, fibroblasts, and the extracellular matrix. In collaboration with additional teams from the Netherlands, and Canada, we aim to uncover the molecular, cellular, and tissue-level rules governing organ-specific inflammation.

We hypothesize that (1) organ context and cellular experience shape the perception of inflammatory signals, and (2) organ-specific hierarchies integrate responses into coordinated outcomes. Using a data-driven approach, we will combine ex vivo and in silico models of mouse and human tissues to explore these mechanisms. High-throughput robotics will generate diverse tissue models with varying sensitivities to infection or immunopathology. Multimodal datasets from these models will be analyzed using machine learning to build computational models, to guide iterative cycles of discovery.

This project will revolutionize tissue biology by creating a unified framework for understanding tissue-specific inflammation, paving the way for new treatments. We are seeking researchers with expertise in bioengineering, computer science, or immunology to join this interdisciplinary effort.

Project keywords: immunology, systems biology, biomedical engineering. 

Category
Institute or Center
University
7
Project Listed Date

Multiscale imaging of tumor and immune metabolism.

Project

Multiscale imaging of tumor and immune metabolism.

Project Details

 Cambridge and NIH have strong pre-clinical and clinical research programs. Both teams are developing novel methods to image metabolism in vivo and from tissue samples. The tools to be used as part of this project include hyperpolarised carbon-13 MRI and deuterium metabolic imaging for non-invasive imaging, as well as bulk mass spectrometry, mass spectrometry imaging and NMR on tissue extracts. The teams will combine expertise to study how these methods can be used to probe the spatial distribution of metabolism in tumour and immune compartments using both pre-clinical and clinical models of cancer. The goal is to use more accurately phenotype cancer using metabolism, and to detect early changes in this metabolism in space and time as biomarkers of successful response to therapy. Ultimately this will be used to improve the management of patients with a wide range of cancers where metabolism is known to play a significant role.

Category
Institute or Center
University
8
Project Listed Date

Deciphering the Roles of Novel CDK4/6 Substrates in G1/S Control and Cancer Progression

Project

Deciphering the Roles of Novel CDK4/6 Substrates in G1/S Control and Cancer Progression

Project Details

The G1/S transition is a critical checkpoint in the cell cycle, controlling the decision of cells to either proceed into DNA replication or enter quiescence. Disruption of this checkpoint is a hallmark of cancer, often driven by hyperactivation of CDK4/6, which is known for its role in phosphorylating the retinoblastoma protein (Rb). However, recent evidence suggests that CDK4/6 targets other substrates beyond Rb that play important but less explored roles in regulating the G1/S checkpoint. In this project, we aim to identify and characterize novel CDK4/6 substrates and their phosphorylation patterns, exploring how these mechanisms contribute to cell cycle control and tumorigenesis. Through a combination of cutting-edge biochemical techniques and quantitative live-cell imaging, we will investigate how these new CDK4/6 substrates modulate the decision-making process during cell division in both normal and cancerous cells. The PhD candidate will have the opportunity to develop a multidisciplinary skill set, combining advanced molecular biology, cell biology, and state-of-the-art microscopy. The project will include extensive biochemical assays to define phosphorylation events, CRISPR/Cas9-mediated gene editing to study the functional impact of these substrates, and live-cell imaging to assess the dynamics of G1/S transition in real-time. Our ultimate goal is to uncover how dysregulation of these novel substrates drives aberrant cell proliferation in cancers, potentially opening up new therapeutic strategies targeting the CDK4/6 axis. The candidate will benefit from a collaborative environment, receiving mentorship across disciplines and contributing to a highly impactful area of cancer research.

Institute or Center
University
8
Project Listed Date

Harnessing Post-Transcriptional Gene Regulation in Lymphocyte Immune Responses: Implications for Cellular Immunotherapy

Project

Harnessing Post-Transcriptional Gene Regulation in Lymphocyte Immune Responses: Implications for Cellular Immunotherapy

Project Details

Lymphocytes respond to infection by rapidly increasing and decreasing the expression of many genes in a highly regulated manner. This regulation requires the integration of transcription, mRNA decay and translation. We are only just beginning to understand how these processes are integrated with each other. The host labs are studying how the multiprotein CCR4-NOT complex and its associated RNA binding proteins control gene expression. By combining structural and molecular biology approaches with cellular immunology and mouse models of immune responses we offer a broad training experience and the opportunity to discover fundamental mechanisms of gene regulation in the immune system. The discoveries have application in modifying the potency and durability of cellular immune therapies such as anti-tumour CART cell responses and the student will have an opportunity to apply fundamental knowledge to these applications.

References
The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins. Nat Commun. 2022 doi: 10.1038/s41467-022-29979-x. PMID: 35477960; PMCID: PMC9046422.

Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Curr Opin Struct Biol. 2022 doi: 10.1016/j.sbi.2022.102460. Epub 2022 Sep 16. PMID: 36116370; PMCID: PMC9771892.

The nexus between RNA-binding proteins and their effectors. Nat Rev Genet. 2023. doi: 10.1038/s41576-022-00550-0. Epub 2022 Nov 23. PMID: 36418462; PMCID: PMC10714665.

Category
Institute or Center
University
8
Project Listed Date
NIH Mentor

Modelling progression risks in Barrett’s oesophagus

Project

Modelling progression risks in Barrett’s oesophagus

Project Details

This is an opportunity to work with Prof Fitzgerald and her group who are internationally renowned for their work on Barrett’s oesophagus including the development of a novel, non-endoscopic capsule sponge test, and Dr. Katki’s group leaders in developing quantitative methods for risk-based approaches to cancer screening.

The incidence of oesophageal cancer has increased rapidly in the past 30 years. Oesophageal adenocarcinoma (OAC), the most common form of oesophageal cancer in the US and UK, has <20% 5-year survival, which improves with early detection. Individuals known to have Barrett’s oesophagus, an asymptomatic precursor condition to oesophageal adenocarcinoma, undergo surveillance with the goal of treating advanced (dysplastic) Barrett’s oesophagus before it develops into cancer, thereby preventing cancer. Even if a cancer is not prevented, surveillance may detect it an earlier, asymptomatic, stage, where survival is better. However, currently the vast majority of Barrett’s oesophagus cases are undetected. The recent development of the capsule-sponge (Cytosponge) by Prof Fitzgerald’s lab has made screening for Barrett’s oesophagus more accessible, since it is cheaper than endoscopy, the prior screening method, and can be performed at a GP practice. We therefore expect an increase in the number of people with detected Barrett’s oesophagus, and therefore the number of people undergoing surveillance.  

Current surveillance guidelines depend only on characteristics of the Barrett’s oesophagus, and have not been updated to reflect the use of capsule-sponge as a surveillance tool. We will model the time to progression among patients with Barrett’s oesophagus, to inform surveillance intervals. Since Barrett’s oesophagus is asymptomatic, it can only be detected at times when the oesophagus is evaluated; special statistical methods are therefore required to model this, such as prevalence-incidence models, developed by Dr Katki’s group. The estimates will focus on absolute risk estimates, since ideally individuals would have a surveillance visit when their absolute risk exceeded a threshold, following the concept of ‘equal management of equal risk’. 

The projects will use clinical data from large cohorts of individuals undergoing endoscopy surveillance in England, Scotland and Northern Ireland. We will use both capsule-sponge and endoscopy data to inform surveillance intervals, including how surveillance intervals could vary based on the number of previous surveillance visits. 

Category
Institute or Center
University
8
Project Listed Date

Investigating brain tumor signaling and development of therapeutics

Project

Investigating brain tumor signaling and development of therapeutics

Project Details

This collaboration will provide the opportunity to work on malignant brain tumors in the laboratories of these three investigators with complementary expertise. The Zhuang laboratory (NIH) has an interest in the investigation of hypoxia (HIF-2a) signaling and tumor development as well as the pathogenesis of brain tumors and development of therapeutics. The Bulstrode laboratory (Cambridge) has an interest in neural stem cell identity and microenvironment interactions in brain development and in brain tumors. The Lathia laboratory (Cleveland Clinic) has an interest in cancer stem cells, tumor microenvironment interactions, immune suppression, and sex differences in brain tumors. The prospective student will have access to mentorship, infrastructure, and resources across all three laboratories. 

Category
Institute or Center
University
8
Project Listed Date
UK Mentor

Dr. Harry Bulstrode and 
Dr. Justin Lathia (Cleveland Clinic)

Structural Analysis of Centrosome Biogenesis

Project

Structural Analysis of Centrosome Biogenesis

Project Details

Most eukaryotic cells are born with a single centrosome that plays an important part in many aspects of cellular organization. Centrosomes are an excellent model for studying organelle biogenesis because, just like the DNA, they duplicate precisely once during each cell cycle. In the early Drosophila embryo, hundreds of centrosomes synchronously assemble every few minutes as the embryos rapidly progress through repeated cycles of division. 

Although centrosomes are complex nanomachines comprising >400 proteins, only ~10 proteins are absolutely essential for centrosome biogenesis. Thus, to understand the principles that allow these embryos to coordinately assemble so many centrosomes at the right time, in the right place, and then grow them to the right size, we need to understand how these proteins interact with each other, and how these interactions are regulated. This project involves using protein prediction software (e.g. AlphaFold2, Rosetta) to identify putative interactions and then using various approaches (biochemistry, CryoEM, in vitro reconstitution) to validate them (NIH). Once validated, the functional significance of these interactions will be tested using live-cell imaging in the early Drosophila embryo (Oxford). See publications below for two examples of previous collaborations between the NIH and Oxford groups.

Feng et al., Structural basis for mitotic centrosome assembly in flies. Cell, 2017.

Conduit et al., The centrosome-specific phosphorylation of Cnn by Polo/PLK1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell., 2014.

Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Structure-function studies of mechanisms underlying the modulation of WNT signalling by R-spondins

Project

Structure-function studies of mechanisms underlying the modulation of WNT signalling by R-spondins

Project Details

The WNT signalling pathway regulates patterning and morphogenesis during embryonic development and promotes the renewal of stem cells to maintain tissue homeostasis in adults. Aberrant WNT signalling also drives many types of cancer. Some WNT responses in vertebrates depend on a second signal provided by the R-spondin family of four secreted proteins, RSPO1-4. RSPOs markedly amplify target cell sensitivity to WNT ligands by neutralizing two transmembrane ubiquitin ligases, ZNRF3 and RNF43, which reduce the cell surface levels of WNT receptors. RSPOs can simultaneously engage ZNRF3/RNF43 and the 7-pass transmembrane receptors LGR4, 5 or 6 to trigger the clearance of ZNRF3/RNF43 from the cell surface, followed by lysosomal degradation. RSPO2 and RSPO3 can also engage heparan sulfate proteoglycans (HSPGs) such as glypicans or syndecans to promote ZNRF3/RNF43 clearance in the presence or absence of LGRs. In both cases, ZNRF3/RNF43 clearance results in increased WNT receptor levels at the cell surface and higher sensitivity to WNT ligands.

The molecular mechanism whereby binding of RSPOs to their LGR and/or HSPG receptors and to their ZNRF3/RNF43 effectors promotes the clearance of the trimeric or tetrameric complexes from the cell surface has remained elusive. In this project, students will combine genetic, cell biological, biochemical, biophysical and structural approaches in the laboratories of Dr. Jones at Oxford University and Dr. Lebensohn at the National Cancer Institute to elucidate the underlying mechanisms.

Institute or Center
University
7
Project Listed Date

Anti-obesity drug development

Project

Anti-obesity drug development

Project Details

Sympathetic neurons have a wide range of physiological functions and their hypoactivity contributes to obesity and diabetes, among other syndromes. Sympathomimemic drugs rescue this deficiency but this drug class, mostly composed of brain-penetrant amphetamines and adrenergic agonists, is both cardiotoxic and highly controlled. Our recent publication puts forward new class of drugs  named Sympathofacilitators that do not enter the brain and have an anti-obesity and cardio-neutral effect in vivo. The first-in-class was published in Mahu I et al Domingos, Cell Metabolism 2020; Fig. 3C of this paper demonstrated a neuro-facilitatory effect, rather than neuro-excitatory one. 

This new class is in needed of novel chemical entities which can be screened in vitro on cultured iPSC-derived sympathetic neurones. The screen would be based on fluorescent readouts of calcium activity reporter, screening for a facilitation of responses to acetylcholine (similar to Fig. 3C of Mahu I et al).

The prospect of identifying natural compounds that have a Sympathofacilitatory effect is tangible when performed in collaboration with the laboratory of Barry O’Keefe. The student will learn lab how to grow and scale-up iPSC-derived sympathetic neurones in Domingos lab, and optimize an in vitro assay based on Fig. 3C. The student will then transfer this knowledge to the lab of Barry O’Keefe where the screen will be performed using a fluorescent plate reader, robotic liquid handling, and a library of natural compounds.

Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Mechanisms of membrane protein quality control

Project

Mechanisms of membrane protein quality control

Project Details

Accumulation of misfolded proteins and aberrant protein aggregates are hallmarks of a wide range of pathologies such as neurodegenerative diseases and cancer. Under normal conditions, these potentially toxic protein species are kept at low levels due to a variety of quality control mechanisms that detect and selectively promote their degradation. Our lab investigates these protein quality control processes with a particular focus on ER-associated degradation (ERAD), that looks after membrane and secreted proteins. The ERAD pathway is evolutionarily conserved and in mammals, targets thousands of proteins influencing a wide range of cellular processes, from lipid homeostasis and stress responses to cell signaling and communication.

We investigate the mechanisms of ERAD using multidisciplinary approaches both in human and yeast cells. Using CRISPR-based genome-wide genetic screens and light microscopy experiments we identify and characterize molecular components involved in the degradation of disease-relevant toxic proteins. In parallel, we use biochemical tools to dissect mechanistically the various steps of the ERAD pathways. In this collaborative project with the Lea lab we will use structural approaches such as cryo-electron microscopy to gain insight into the molecular mechanisms of ERAD.

These studies, by providing mechanistic understanding of the ERAD process, may shed light on human diseases impacting ER function and may ultimately contribute to better therapeutics. 

Institute or Center
University
7
Project Listed Date
NIH Mentor

Understanding cancer clonal dynamics towards novel therapeutic approaches

Project

Understanding cancer clonal dynamics towards novel therapeutic approaches

Project Details

Burkitt lymphoma (BL) is an aggressive cancer of germinal centre B cells that largely affects children globally. In sub-Saharan Africa, Burkitt lymphoma is an endemic disease associated with Epstein-Barr Vius (EBV) and Plasmodium falciparum infection. Unfortunately, children in sub-Saharan Africa have a far worse outcome with about 40% of children surviving compared to greater than 90% elsewhere, particularly in high income countries in Europe and North America. This is due to low access to reliable pathology diagnosis, limited access to specialized oncology centres, where the effective cytotoxic treatments and necessary life support can be given to patients during care. However, there might be biological factors that contribute as well to differences in outcome> For example, Burkitt lymphoma in sub-Saharan Africa is associated with EBV and Plasmodium falciparum infection, which may mediate a different tumour landscape (predominated by action of mutator enzyme adenosine-induced cytosine deaminase), whereas elsewhere these factors are lacking and the tumour landscape is influenced by accumulation of mutations in genes influencing apoptosis. In Cambridge, Prof. Turner has developed in vivo models of both sporadic and endemic Burkitt lymphoma that facilitate comparative research into disease mechanisms. In this project, these will be employed to understand the clonal heterogeneity of these malignancies using a combination of in vivo CRISPR screens and lineage tracing. Data will be validated using a large resource of primary patient specimens available within the EMBLEM study coordinated by the National Cancer Institute. Ultimately, data will be analysed with a view to developing biomarkers of disease prognosis as well as novel therapeutic approaches. In both cases the resource settings of sub-Saharan Africa will be considered towards sustainable and achievable approaches. The student will have the opportunity to travel to Uganda during the course of their studies.

Category
Institute or Center
University
8
Project Listed Date
NIH Mentor

Understanding the XPO7:SLK complex to formulate synergistic combination therapies

Project

Understanding the XPO7:SLK complex to formulate synergistic combination therapies

Project Details

Most translational efforts for uncommon cancers stem from oncogenic mutations identified by sequencing. In contrast to genomic analyses, the tumor proteome has the potential to better approximate phenotype-inducing alterations, particularly in the absence of targetable driver mutations. However, tumor analyses using mass spectrometry can be challenging. Exosomes (small extracellular membrane-enclosed vesicles) may circumvent these issues and serve as a valuable, prioritized, “window” into the tumor cell proteome. Applying this reasoning to bile duct cancers (cholangiocarcinoma, CCA), we performed mass spectrometry on exosomes extracted from patient bile, revealing a 17-fold enhancement of the nuclear export protein XPO7. Immunohistochemistry analysis of XPO7 expression in 318 CCA patients unexpectedly demonstrated intense cytoplasmic staining. Within the cytosol we demonstrate that XPO7 exists in a molecular complex with the serine/threonine kinase SLK. shRNA-mediated knockdown of either XPO7 or SLK in CCA lines abrogated tumor organoid formation and reduced orthotopic tumor growth. To translate the target to patients, we identified tivozanib as a potent SLK inhibitor. Tivozanib treatment reduced tumor organoid formation in vitro and induced tumor regression in vivo in patient derived xenografts (n=2). Together, these findings reveal a novel cytosolic XPO7:SLK signaling axis that is targetable in CCA patients and we have already documented early responses with our accruing Phase I/II trial (NCT 04645160). It is however clear that single agents will not result in cures for patients with solid tumors, and a better understanding of the XPO7:SLK complex (including downstream oncogenic signaling axes) will be required to formulate and implement synergistic combination therapies.

Category
Institute or Center
University
7
Project Listed Date
UK Mentor

Examining a new class of drugs named Sympathofacilitators 

Project

Examining a new class of drugs named Sympathofacilitators

Project Details

Sympathetic neurons have a wide range of physiological functions and their hypoactivity contributes to obesity and diabetes, among other syndromes. Sympathomimemic drugs rescue this deficiency but this drug class, mostly composed of brain-penetrant amphetamines and adrenergic agonist, is both cardiotoxic and highly controlled. Our recent publication puts forward new class of drugs named Sympathofacilitators that do not enter the brain and have an anti-obesity and cardio-neutral effect in vivo. The first in-class was published in Mahu I, Domingos, et al. Cell Metabolism 2020; Figure 3C of this paper demonstrated a neuro-facilitatory effect, rather than neuro-excitatory one.

This new class is in need of novel chemical entities which can be screened in vitro on cultured iPSC-derived sympathetic neurons. The screen would be based on fluorescent readouts of calcium activity reporter, screening for a facilitation of responses to acetylcholine (similar to Figure 3C of Mahu I, et al).

The prospect of identifying natural compounds that have a Sympathofacilitatory effect is tangible when performed in collaboration with the laboratory of Barry O'Keefe. The student will learn how to grow and scale-up iPSC-derived sympathetic neurons in the Domingos lab, and optimize an in vitro assay based on Figure 3C. The student will then transfer this knowledge to the lab of Barry O'Keefe where the screen will be performed using a fluorescent plate reader, robotic liquid handling, and a library of natural compounds.

Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Investigating mechanisms of ER-associated degradation (ERAD) in human disease

Project

Investigating mechanisms of ER-associated degradation (ERAD) in human disease

Project Details

Accumulation of misfolded proteins and aberrant protein aggregates are hallmarks of a wide range of pathologies such as neurodegenerative diseases and cancer. Under normal conditions, these potentially toxic protein species are kept at low levels due to a variety of quality control mechanisms that detect and selectively promote their degradation. Our lab investigates these protein quality control processes with a particular focus on ER-associated degradation (ERAD), that looks after membrane and secreted proteins. The ERAD pathway is evolutionarily conserved and in mammals, targets thousands of proteins influencing a wide range of cellular processes, from lipid homeostasis and stress responses to cell signaling and communication.

We investigate the mechanisms of ERAD using multidisciplinary approaches both in human and yeast cells. Using CRISPR-based genome-wide genetic screens and light microscopy experiments we identify and characterize molecular components involved in the degradation of disease-relevant toxic proteins. In parallel, we use biochemical tools to dissect mechanistically the various steps of the ERAD pathways. In this collaborative project with the Lea lab we will use structural approaches such as cryo-electron microscopy to gain insight into the molecular mechanisms of ERAD.

These studies, by providing mechanistic understanding of the ERAD process, may shed light on human diseases impacting ER function and may ultimately contribute to better therapeutics. 

Institute or Center
University
7
Project Listed Date
NIH Mentor

Artificial intelligence in diagnostic prostate MRI to improve outcomes

Project

Artificial intelligence in diagnostic prostate MRI to improve outcomes

Project Details

There has been increasing interest in applying computational methods in medicine, to make sense of cancer’s ‘big data’ problem by exploiting recent advances in data-processing and machine learning to capture and integrate clinical, genomic, and image data collated from hundreds of cancer patients in real-time. Such methods can be applied to digital clinical images to extract image information about patterns of pixels that are not perceivable to the human eye, allowing characterisation of tumour.  Prostate cancer is the 2nd commonest male cancer worldwide, and MRI is the diagnostic tool of choice, however, MRI can miss 10% of significant tumours and leads to unnecessary (invasive) biopsy in around 1/3rd patients who do not have cancer.  

We will use a prototype AI system (Pi) developed with Lucida Medical on retrospective data, in a prospective clinical study. We plan to link histological data to imaging features derived from MRI (including texture analysis) to identify predictors of lesion aggressiveness and need for sampling, using biopsy cores and surgical specimens from the prospective cohort. Further work will link biopsy tissue to MRI data to identify radiogenomic markers of disease aggressiveness. The project presents an opportunity for AI to answer key clinical questions at the intersection of interpretation, imaging and biopsy.  

The project will involve working with
an established interdisciplinary programme of researchers and help in the assessment of cross-cutting “multi-omic” approaches to cancer assessment, involving integration of advanced image analysis, transcriptomic, genomic, tissue, and patient outcomes to inform the design of diagnostic strategies.

Institute or Center
University
8
Project Listed Date

Structure-function studies of bacterial cell envelope machines involved in pathogenesis

Project

Structure-function studies of bacterial cell envelope machines involved in pathogenesis

Project Details

The bacterial cell envelope comprises the cell wall and either one or two membranes. The cell envelope is of major interest in infection biology because it is the site at which pathogenic bacteria interact with their host organism. In particular, bacterial virulence proteins must be transported across the cell envelope to affect the host.

We aim to understand the molecular mechanisms by which proteins, nucleic acids, and mechanical force are transferred across and along the cell envelope in processes of biomedical importance. The project is to undertake structure-led studies of  the dedicated nanomachines that carry out these processes. The NCI part of the collaboration will involve structural analysis, primarily by cryoEM. The Oxford part of the collaboration will concentrate on complementary mechanistic work using biochemical, genetic, and live cell single molecule imaging methods. Our groups  have collaborated for more than 15 years on projects including the transport of folded proteins across the bacterial inner and outer membranes (Tat protein transport system and Type 9 Secretion System), lipoprotein export, DNA transport during horizontal gene transfer (conjugation and natural competence), and gliding motility.

Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

HIV-1 Env incorporation and maturation

Project

HIV-1 Env incorporation and maturation

Project Details

The formation of infectious HIV-1 particles requires the incorporation of Env glycoproteins during the assembly process, with Env mediating binding of newly released virions to target cells and subsequent entry via fusion between viral and target-cell membranes. The interaction between the MA domain of Gag and gp41 of Env plays a central role in Env incorporation into virions and in the activation of Env fusion activity, yet this interaction remains poorly understood at the biochemical and structural levels. In addition, recent structures of the MA lattice in both immature and mature HIV-1 particles implicate a maturation-induced rearrangement of MA the lattice. This opens the possibility that MA-gp41 interactions are dynamic, and change during the maturation process.

We aim to apply an array of biochemical, structural, super-resolution imaging, and virological approaches that will interrogate the MA/gp41 interaction and will provide novel insights into the mechanism and dynamics of Env incorporation into HIV-1 particles. A set of informative mutants, which display stabilized MA-MA and/or MA-gp41 interactions, will be used for structural studies,. Cryo-ET analysis of intact mature and immature virions will be performed to obtain structural data that will complement the information obtained with the MA/Gag assemblies. Predictions regarding potential sites of MA-MA and MA-gp41 interactions obtained from these structural studies will be tested in Env incorporation and virus replication assays. This combination of structural, biochemical, and virological studies will help to elucidate the mechanism of Env incorporation into HIV-1 particles and the subsequent process of particle maturation.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Imaging HIV-1 nuclear import by in situ cryo-tomography and correlative microscopy

Project

Imaging HIV-1 nuclear import by in situ cryo-tomography and correlative microscopy

Project Details

Human immunodeficiency virus type 1 (HIV-1) is the causative agent behind acquired immunodeficiency syndrome (AIDS) that currently has no cure or vaccine. While antiviral treatments are effective, the rise of drug-resistant strains has become a growing concern. HIV-1 primarily infects the immune system, targeting CD4+ T cells and macrophages and is a lentivirus known to be able to infect non-dividing cells, requiring it to exploit nuclear import mechanisms. This process is dependent on the viral capsid. The HIV capsid is a conical structure that houses the genomic material of the virus. It needs to be metastable in order to be protective while allowing timely disassembly (termed uncoating) to release its genome. The dynamics of the capsid nuclear import and uncoating are still unknown and are modulated by host dependency and restriction factors.

We aim to apply multi-imaging modalities to investigate uncoating and nuclear import of HIV. These will include super-resolution fluorescence microscopy (including the newest MINFLUX technology), Focused Ion Beam and Scanning electron microscopy (cryoFIB/SEM), cryo-electron microscopy and cryo-electron tomography (cryoEM/ET). The viral core and host factors will be fluorescently tagged, and infection will be monitored from viral attachment to nuclear import. The sample will be cryo-preserved and imaged by cryoEM/ET and cryoFIB/SEM. The combination of these imaging techniques, paired with molecular biology and virology tools, will yield unparalleled knowledge of the HIV infection process within the native cells, providing the framework for development of novel therapeutics targeting HIV infection in the future.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Computational investigation of tumor microenvironment

Project

Computational investigation of tumor microenvironment

Project Details

We are interested in a variety of topics related to “Deciphering cellular heterogeneity in tumor microenvironment using single cell data”, “Functional characterization of tumor infiltrating T cells”, “Links between embryonic development and cancer”, “Functional characterization of non-coding somatic mutations”, and “Methods for single cell omics”. These projects involve non-trivial  methods development as well as sophisticated data analysis but the focus is always on the biological question. Our lab is involved in several collaborations with immunologists and cancer biologists.

Institute or Center
Project Listed Date

Understanding immune correlates of protective immunity

Project

Understanding immune correlates of protective immunity

Project Details

We have several lines of research that accommodate excellent PhD candidates. These revolve around the theme of RNA viral pathogens, antibodies/B-cell responses and immunodeficiencies.


The first involves understanding Immune Correlates of protective immunity, specifically which types of B-cell response and their fine specificities are important for protection against specific RNA viral pathogens (RNA viruses from HIV, HCV to Ebola) how B-cell responses to correlate with protection by vaccines to specific pathogens. The 2nd project involves using broadly neutralizing monoclonal antibodies to develop improved and novel vaccines against notoriously variable viruses. The 3rd project involves understanding how the resident virome in primary, acquired or induced immunodeficiencies leads to chronic immune activation and poor prognosis, with an emphasis on mucosal immunity.

Category
Institute or Center
Project Listed Date

Understand human disease associated with chromosome instability

Project

Understand human disease associated with chromosome instability

Project Details

The aim of this project is to exploit the human artificial chromosomes (HAC) to understand human disease associated with chromosome instability and to develop new strategy for therapeutic treatments.

Institute or Center
University
7
Project Listed Date

What types of physical activity are associated with a lower incidence of cancer?

Project

What types of physical activity are associated with a lower incidence of cancer?

Project Details

At the National Cancer Institute, we have demonstrated that higher levels of moderate to vigorous intensity physical activity are associated with a lower risk of cancer, including cancer in the breast, colon, endometrium, bladder, kidney, and stomach1. However, due to a reliance on self-reported measures of physical activity, a number of key questions remain unanswered on what overall volume of physical activity, and what types of physical activity, are associated with lower cancer risk. In addition, previous studies are observational by nature and are therefore unable to determine causality due to unmeasured or residual confounding.

At Oxford, our group has shown that wearable sensors such as wrist-worn accelerometers can be used to noninvasively measure physical activity status in large-scale biomedical studies. For example, we have measured physical activity status in 103,712 UK Biobank participants who agreed to wear a wrist-worn accelerometer for seven days2. These measurements are now actively used by health researchers worldwide to demonstrate that simple measures of overall activity are cross-sectionally associated with cancer outcomes3. However, no large study of device measured physical activity has yet taken place to assess associations with incident cancer outcomes with sufficient longitudinal follow-up. Furthermore, activity trackers often capture ~180 million data points/participant/week and therefore have the potential to identify other powerful behavioural signals to detect future cancer risk.

Machine learning methods can help maximise the utility of data from wearable sensors. These methods attempt to automatically detect patterns in data and then use those uncovered patterns to predict future data. Our group has demonstrated the utility of supervised machine learning to identify sleep and functional physical activity behaviours from raw accelerometer data4. However, there is a broad concern around the lack of reproducibility of machine learning models in health data science5. It is therefore important to carefully consider how to promote robust machine learning findings and reject irreproducible ones, to ensure credibility and trustworthiness.

This DPhil project therefore proposes to use the world’s largest available datasets to investigate what types of physical activity are associated with a lower incidence of cancer. Working with colleagues at the University of Oxford and the National Cancer Institute, you will have the opportunity to address the following important questions:

1. What behavioural measurements of physical activity status can be reliably ascertained from accelerometer datasets?
You will have the opportunity to develop reproducible machine learning skills to develop methods to identify physical activity behaviours from raw accelerometer datasets. Specifically, you will develop semi-supervised machine learning methods which seek to combine supervised methods (good quality labels, small datasets) with unsupervised methods (no labels but large datasets which are less prone to sampling bias). This will involve use of the largest available accelerometer datasets with reference measurements for physical activity behaviours in free-living environments (using wearable cameras)6.

2. What physical activity behaviours are associated with incident cancer events?
Here, you will have the opportunity to develop new skills in epidemiological data analysis. You will have the opportunity to use the UK Biobank dataset which has collected wrist worn accelerometer data from 103,712 participants2. This dataset includes information on participants’ first hospital admission or death from cancer, identified from linkages to the national death index, Hospital Episode Statistics, and cancer registries.

3. Are physical activity behaviours potentially causally associated with cancer?
You will have the opportunity to develop genetic epidemiology skills by implementing two-sample Mendelian Randomization7 to assess potential causal effects of accelerometer measured physical activity and cancer. For cancer outcomes, summary genetic association data will be obtained from existing collaborators from International cancer consortia.

Candidates should have a BSc, or ideally MSc, in a discipline with a substantive epidemiological, computational, or quantitative component. We very much welcome prospective candidates to directly contact us to further develop this proposal.

Category
Institute or Center
University
7
Project Listed Date

Identifying Regulators of Cancer Stem Cells in Pancreatic Cancer

Project

Identifying Regulators of Cancer Stem Cells in Pancreatic Cancer

Project Details

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies in human due to its late detection, highly metastatic characteristics, and poor responsiveness to current therapeutics. Pancreatic tumorigenesis involves a dedifferentiation process of cellular identity and the acquisition of a stem cell-like state of a subpopulation of cells known as cancer stem cells (CSCs). These cells are exceptionally important due to their higher therapeutic resistance and phenotypic plasticity that allows CSCs to metastasize and give rise to tumours. Currently, it remains largely unclear, which molecular markers and protein machineries control the stem cell-like identity of pancreatic CSCs. This knowledge would be valuable for earlier cancer detection and for developing more efficient pancreatic cancer therapeutics in the future.


The research objective of the project is to identify and characterize novel transcriptional regulators which govern gene expression of pancreatic cancer cells, particularly stem cell-like characteristics CSCs. The project will apply a broad range of cutting-edge research techniques such as 2D and 3D human cell culture systems, co-cultures of different cell types, next-generation single cell sequencing (scRNA-seq, scATAC-seq) of tumoural subpopulations in genetically engineered murine models (GEMMs) of pancreas cancer, functional studies (CRISPR/Cas9-mediated gene editing, tumour sphere assays), mechanistic studies (confocal microscopy, flow cytometry, cell sorting, CyTOF, western blotting), patient samples and mouse in vivo studies.


Collectively, this project will provide key insights to the signalling pathways and molecular mechanisms essential for the formation and maintenance of pancreatic CSCs, helping to better understand the tumorigenic process, and to uncover novel ways for diagnosing and treating this lethal cancer.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Mapping protein-metabolite interactions on a proteome-wide scale

Project

Mapping protein-metabolite interactions on a proteome-wide scale

Project Details

In order to maintain homeostasis in response to environmental changes such as nutrient availability, eukaryotic cells have evolved intricate mechanisms to quickly increase or decrease the activity of fundamental processes such as gene expression, protein expression and degradation. Indeed, several metabolites act as cofactors for important cellular enzymes that regulate e.g. chromatin state and serve as templates for posttranslational modifications flagging proteins for proteolysis via the ubiquitin-proteasome system. Consequently, the identification of metabolites and complementary binding domains has broadened our understanding of human physiology and contributed to the development of new medicines to treat malignant and inflammatory disease. The aim of this project is to systematically map protein-metabolite interactions on a proteome-wide scale by combining the development of specific metabolite-inspired affinity reagents with unbiased approaches such as thermal profiling to dissect metabolite signalling in the context of protein degradation pathways in various cell types. Applicants will have the opportunity to take advantage of a unique combination of synthetic organic chemistry and cell biology techniques to identify new potential drug targets and develop first-in-class ligands for key regulators of protein homeostasis.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor

Identifying sub-populations of cells critical for cancer disease progression

Project

Identifying sub-populations of cells critical for cancer disease progression

Project Details

Tissue multiplexing is a new imaging method that allows to visualise a large number of protein targets in tissues. This exciting new technology allows for new approaches to phenotyping cells and to decode more complex patters of communication between different tissue compartments. The goal of this project is to develop the required image analysis and inference methods using advanced machine learning and AI in 2D and 3D. As a result, you will be advancing our understanding of the tumour environment and find novel ways of identifying sub-populations of cells that play a critical role in disease progression.

 

You will be working side by side with world leading cancer researchers at NIH NCI and the University of Oxford. At both sites you will have access to unique patient cohorts. Together with David Wink and Stephen Lockett (both NCI) you will be working on aspects if breast cancer. In Oxford, Richard Bryant and Ian Mills will lead on work in prostate cancer, which is the commonest non-cutaneous cancer in men, and often progresses to incurable metastatic disease. Your work will also be supported by expert pathologists and you will be working towards improving current practice in cellular pathology.

 

The broader group has already established a very active collaboration and you will be expected to work in both locations. In Oxford, you will be embedded in the Quantitative Biomedical Image Analysis group led by Prof. Rittscher. Part of your role will be to accelerate the exchange of technology and software between the two locations. This project provides a unique opportunity to study mechanisms that are common to different cancer types.

Category
Institute or Center
University
7
Project Listed Date

Chemical biology tools to study crosstalk between cell metabolism and protein degradation

Project

Chemical biology tools to study crosstalk between cell metabolism and protein degradation

Project Details

In order to maintain homeostasis in response to environmental changes such as nutrient availability, eukaryotic cells have evolved intricate mechanisms to quickly increase or decrease the activity of fundamental processes such as gene expression, protein expression and degradation. Indeed, several metabolites act as cofactors for important cellular enzymes that regulate e.g. chromatin state and serve as templates for posttranslational modifications flagging proteins for proteolysis via the ubiquitin-proteasome system. Consequently, the identification of metabolites and complementary binding domains has broadened our understanding of human physiology and contributed to the development of new medicines to treat malignant and inflammatory disease. The aim of this project is to systematically map protein-metabolite interactions on a proteome-wide scale by combining the development of specific metabolite-inspired affinity reagents with unbiased approaches such as thermal profiling to dissect metabolite signalling in the context of protein degradation pathways in various cell types. Applicants will have the opportunity to take advantage of a unique combination of synthetic organic chemistry and cell biology techniques to identify new potential drug targets and develop first-in-class ligands for key regulators of protein homeostasis.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Genetic and functional association of a novel human interferon, IFN-λ4, with human infections and cancer.

Project

Genetic and functional association of a novel human interferon, IFN-λ4, with human infections and cancer.

Category
Institute or Center
Project Listed Date

Risk factors and biomarkers of Burkitt lymphoma (BL)

Project

Risk factors and biomarkers of Burkitt lymphoma (BL)

Project Details

The BL research is organized into four focus areas: a) epidemiology; b) infections; c) genetics, and d) tumor studies. The epidemiological studies seek to characterize the macro- and micro-geographical and spatial-temporal  patterns of endemic Burkitt lymphoma to generate new hypotheses about environmental risk factors. The infection focus seek to discover infection-related biomarkers of risk, focusing on unique serological profiles or discovery of high-risk genetic variants for EBV or Pf infection associated with eBL risk. The genetic studies (GWAS, exome, HLA) provide a powerful approach to complement questionnaire and serological methods with less concern for measurement error, reverse causality, and imperfect correlation with biology to disentangle the genetic architecture of eBL risk.  Finally, BL is a molecular disease with identifiable molecular sub-groups. The EMBLEM study provides an opportunity to collaborate with others on studies to develop a blood-based assay for BL diagnosis and molecular characterization. Students will be given the opportunity to spend time in East Africa with collaborating partners to be involved with data and sample collections.

 

The primary goals of EMBLEM are to investigate:

a) risk factors of BL in endemic populations in East Africa;

b) EBV and Pf immuno-profiles and other biomarkers associated with BL;

c) molecular characteristics of BL tumor genomes, B-cell receptor, and EBV variants; and

d) germline risk factors of BL using genome-wide association studies (GWAS) and exome sequencing

e) the association between BL and human leukocyte antigen (HLA) class I and II loci.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Crosstalk between tumour suppressor p53 and inflammation in cancer

Project

Crosstalk between tumour suppressor p53 and inflammation in cancer

Project Details

The tumour suppressor p53 is encoded by the most mutated gene in human cancers and there is extensive knowledge of its vital role in tumour suppression. However, the contribution of p53 to immune surveillance is less well understood. Cancer initiation and progression is influenced by inflammation, and it is increasingly important to understand interactions between inflammatory and tumourigenic pathways to improve cancer prevention and patient responses to immunotherapy. p53 activity is known to intersect with key inflammatory signalling pathways, including NFB, AP1, MAPK and JAK/STAT, suggesting p53 could have a pivotal role in immune surveillance. To expand knowledge in this important area, this project will investigate crosstalk between the p53 pathway and inflammation.

 

The project will use cutting edge technologies, including ex vivo 3D organoid co-culture models, to study interactions between cancer-initiating epithelial cells and immune cells. It will also harness recent advances in RNA-sequencing, single cell analysis and ChIP-sequencing, as well as a broad range of molecular cell biology techniques, to address the crosstalk between p53 and inflammation. The student will be able to leverage access to expertise and clinical samples in chronic inflammatory conditions – such as Barrett’s Oesophagus – that predispose patients to cancer. Oesophageal cancer and stomach cancer may be used as exemplar cancer types; these cancers have important unmet clinical needs and strong links to inflammation. This project may also extend to crosstalk of p53 with the immune system, such as in the context of immunotherapy for cancer: an emerging therapeutic strategy that is showing great success in some patients. The study will offer exciting opportunities to understand the details of the relationship between p53 and inflammation, which will be crucial for developing new approaches for early intervention to prevent cancer progression and for understanding responses to therapy.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor

Chemical biology tools to study crosstalk between cell metabolism and protein degradation

Project

Chemical biology tools to study crosstalk between cell metabolism and protein degradation

Project Details

In order to maintain homeostasis in response to environmental changes such as nutrient availability, eukaryotic cells have evolved intricate mechanisms to quickly increase or decrease the activity of fundamental processes such as gene expression, protein expression and degradation. Indeed, several metabolites act as cofactors for important cellular enzymes that regulate e.g. chromatin state and serve as templates for posttranslational modifications flagging proteins for proteolysis via the ubiquitin-proteasome system. Consequently, the identification of metabolites and complementary binding domains has broadened our understanding of human physiology and contributed to the development of new medicines to treat malignant and inflammatory disease. The aim of this project is to systematically map protein-metabolite interactions on a proteome-wide scale by combining the development of specific metabolite-inspired affinity reagents with unbiased approaches such as thermal profiling to dissect metabolite signalling in the context of protein degradation pathways in various cell types. Applicants will have the opportunity to take advantage of a unique combination of synthetic organic chemistry and cell biology techniques to identify new potential drug targets and develop first-in-class ligands for key regulators of protein homeostasis.

Category
Institute or Center
University
7
Project Listed Date
NIH Mentor
UK Mentor
Back to Top