Investigating peripheral sensory neuron circuits in health and disease.
Investigating peripheral sensory neuron circuits in health and disease.
Our aim is to understand the sensory circuits that govern normal (protective) touch and pain, and how following injury or disease to the nervous system, pain can become chronic (neuropathic pain). Sensory neurons are heterogeneous neurons that innervate sensory targets (such as the skin), and extend central terminals which enter the dorsal horn of the spinal cord. We are interested in the role of molecularly defined subpopulations of sensory neurons, and how they contribute to the development and maintenance of neuropathic pain. We utilise chemogenetic and optogenetic strategies to selectively silence or activate sensory neuron function in mice. Combining this with behavioural paradigms to assess evoked and spontaneous pain, allows us to identify key populations of sensory neurons in pain processing, with the hope of identifying new druggable targets for future development. Further validation is undertaken in human iPSC derived sensory neurons. Students will learn and use a wide range of techniques including (but not limited to); Chemogenetics, optogenetics, viral vectors, mouse transgenics, animal behaviour, electrophysiology and calcium imaging.