Understanding genetic susceptibility to nontuberculous mycobacterial infections
This collaborative project between Dr. Steven Holland’s laboratory at the NIH and Dr. Lalita Ramakrishnan’s lab at the University of Cambridge will seek to understand the mechanistic basis of human susceptibility to environmental mycobacteria that are nonpathogenic to most people but can cause serious disease in individuals with specific immune deficiencies. Dr. Holland runs an international referral service that takes care of a unique cohort of patients with genetic susceptibility to nontuberculous mycobacterial infections. In the lab, they are mapping these susceptibilities and have found then to map to distinct immune genes, e.g., IRF8 and GATA-2, myeloid growth factors, IL-12R, the GTPase Rac2, to name only a few.
Dr. Ramakrishnan’s group has pioneered the optically transparent and genetically tractable zebrafish as a model for mycobacterial pathogenesis. The use of the zebrafish has enabled discoveries about TB immunopathogenesis and the genetic basis of susceptibility to TB which has led to the discovery of a variety of inexpensive, approved drugs that can be used to treat TB, often in a patient genotype-directed manner. They have also used the zebrafish to understand the mechanism of leprosy neuropathy.
Through this joint project, the two labs will work together to harness the power of the zebrafish to understand the molecular and cellular basis of the human susceptibilities identified by Holland. The student will move between humans and fish (and Bethesda and Cambridge) to uncover fundamental mechanisms of mycobacterial disease pathogenesis while acquiring mastery over the disciplines immunology, infectious diseases, genetics, molecular biology and cell biology.