header-bg

Mechanisms of perception and cognition

Project

Mechanisms of perception and cognition 

Project Details

Mechanisms of perception and cognition 
Section on Perception, Cognition, and Action, Laboratory of Sensorimotor Research (NEI/NIMH)

Students would have the option to work on any project in the lab, and to take it in new directions. Current projects in the lab aim to understand the normal brain processes by which physical signals that impinge on the sensory apparatus (eyes, ears) are transformed into perceptions, thoughts, and actions. Work in the lab has been especially invested in developing color as a model system. The advantage of color is that its physical basis (wavelength) is well characterized, yet these chromatic signals support not only low-level visual abilities such as color matching but also high-level cognitive processes such as categorization, memory, social cognition, and emotion. This variety of phenomena provides a rich opportunity for investigating the full scope of perceptual and cognitive computations that make human vision such an important source of information about the world. The lab uses many research techniques, including psychophysics and non-invasive brain imaging (MRI, MEG) in humans, along with fMRI-guided microelectrode recording, fMRI-guided pharmacological blockade, microstimulation, tract-tracing, and computational modeling in non-human primates (NHPs). Work in the lab is organized around Four broad approaches:

First, the use of MRI in humans and NHPs to investigate homologies of brain anatomy and function between these species, to support the applicability of neurophysiology from NHPs to the human case, and to test hypotheses about the fundamental organizational plan of the cerebral cortex in the primate.

Second, the use of well-controlled psychophysics (including longitudinal experiments) combined with microelectrode recording in NHPs to show on a mechanistic level how populations of neurons drive behaviors such as perceptual decisions, categorization, and concept formation and memory.

Third, comparative psychophysical studies in humans and NHPs, as part of a program of neuroethology to understand the relative computational goals of perception/cognition in different primate species. In addition to studies of vision, the lab conducts experiments using auditory and combined audio-visual stimuli, to understand common principles of sensory-cognitive information processing, and to determine how signals across the senses are integrated into a coherent experience.

Fourth, large-scale neurophysiological experiments combined with cutting-edge analysis methods including machine learning, to determine the mechanisms of high-acuity visual perception at the center of gaze. We have developed several eye-trackers that afford photo-receptor resolution, providing an unprecedented look at fine-scale spatial and chromatic processing of the foveal representation in primary visual cortex. 
 

Category
Institute or Center
Project Listed Date
NIH Mentor
Back to Top