header-bg

Combining neuroimaging and neurophysiology to understand the nature of residual vision across species following damage to primary visual cortex

Project

Combining neuroimaging and neurophysiology to understand the nature of residual vision across species following damage to primary visual cortex

Project Details

The laboratory of Prof Bridge in Oxford focusses on understanding the pathways in the human visual system that can process residual vision after someone has had a stroke that affects the primary visual cortex.

The laboratory of Prof Leopold combines neuroimaging, behaviour and neurophysiology in a non-human primate model to better understand computation in the visual system, particularly relating to conscious perception.

The proposed PhD project would have 3 main objectives:

  1. Quantitatively compare changes in retinotopic maps and population receptive fields in humans and non-human primates with damage to primary visual cortex.
  2. Determine the visual pathways in the two species that are necessary and/or sufficient to provide residual vision within the blind region of the visual field.
  3. Investigate the neural changes that occur as a result of visual training following the damage to the visual system in order to inform rehabilitation programmes for people who have suffered a stroke to the visual system.

    During the training programme, the student would have the opportunity to learn about multi-modal human neuroimaging approaches applied to both the healthy and the damaged visual system. This would be complemented by training in both neuroimaging and neurophysiology in the non-human primate.
Category
University
7
Project Listed Date
NIH Mentor
UK Mentor
Back to Top