Developmental origins of tissue-specific vulnerability to mitochondrial disease
Mitochondrial diseases are caused by defects in genes required for energy production and oxidative phosphorylation (OxPhos). We find it intriguing that some patients with mitochondrial disease present late in life, with very tissue-specific phenotypes. It seems that not all cells and tissues are equally susceptible to mitochondrial disease.
We mainly study how mitochondrial dysfunction and mutations in the mitochondrial genome affect neural stem cell behaviour in Drosophila and mouse. The questions we address are:
(1) how mitochondrial dysfunction affects normal and pathological cell fate decisions in the developing brain. We previously showed that neural stem cells in the brain rely heavily on mitochondrial energy production and now study how they interact with the glial cells that make up their stem cell niche.
(2) how transcription of the nuclear genome is regulated when a cell is confronted with mitochondrial dysfunction. We employ and develop innovative DamID-based in vivo chromatin profiling technology to study metabolism of chromatin modification.
(3) how mutations in the mitochondrial genome evolve over time, during brain development and aging. We use in situ hybridisation-based methods and single-cell CRISPR screening to identify novel regulators of mitochondrial genome maintenance.
In order to study these questions in an in vivo context, in (stem) cells surrounded by their appropriate tissue environment, our primary model system is the fruit fly, Drosophila melanogaster. In addition, we actively translate our findings and the technology we develop into mammalian model systems, in particular the mouse embryonic cortex.
Relevant references
- van den Ameele J, Krautz R, Cheetham SW, et al., Reduced chromatin accessibility correlates with resistance to Notch activation. Nat Commun. 2022;13(1):2210.
- van den Ameele J, Li AYZ, Ma H, Chinnery PF. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin Cell Dev Biol. 2020 Jan. 97:156-66.
- van den Ameele J, Brand AH. Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. eLife. 2019;8:e47887.
- Tiberi L*, van den Ameele J*, Dimidschstein J, Piccirilli J, Gall D, Herpoel A, Bilheu A, Bonnefont J, Iacovino M, Kyba M, Bouschet T, Vanderhaeghen P. Bcl6 induces neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci. 2012 Dec;15(12):1627-35.
- Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN, Gaillard A, Vanderhaeghen P. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature. 2008 Sep 18;455(7211):351-7.