The neural mechanism underlying multisensory learning during spatial navigation
Multisensory learning helps an individual learn through more than one sense. However, the underlying neural mechanism is unclear. In this study we aim to pursue this question in a spatial learning regime. We will focus on the medial entorhinal cortex (MEC), which plays a critical role in spatial learning and the dysfunction of which is closely related to Alzheimer’s disease. We will record neural dynamics of the MEC using two-photon imaging approach when mice navigate in virtual environments, in which multisensory spatial information will be precisely delivered. The goal of the project is to deeply understand how the neural response of the MEC contributes to multisensory learning.