Ultra-High Field (7T) Magnetic Resonance Imaging (MRI) Development
I founded a new ultra-high field (7T) MRI physics group in Cambridge in autumn 2017. We develop cutting-edge methods for studying the human brain and body using Cambridge’s state-of-the-art Siemens Terra 7T MRI scanner. My group have active collaborations with clinicians in clinical neurosciences, psychiatry, oncology, and cardiology (Papworth), and with experts in cognitive neuroscience. I welcome PhD students to join the group. The following are areas of strong interest from our community, which would be suitable to develop a PhD project in discussion with me.
(i) Developing new spectroscopic imaging pulse sequences to map neurochemical profiles across the whole brain in a single scan. We have hardware available to apply these methods to study metabolites containing 1H (e.g. NAA, creatine, GABA, GSH) or 31P (e.g. PCr, ATP, in vivo pH mapping) or 13C (e.g. labelled glucose or succinate).
(ii) Developing new methods for neuroimaging, particularly for imaging blood flow in small vessel disease, or for rapid, motion-corrected fMRI in deep brain nuclei.
(iii) Developing new metabolic imaging methods for use in the human body. These would use a new multinuclear (1H and 31P) whole-body coil being built for me by Tesla Dynamic Coils (Netherlands). This could be developed in collaboration with colleagues at Papworth and Radiology for studies in the heart.
(iv) Imaging of metabolism by 2H deuterium metabolic imaging (DMI).
Prof. Chris Rodgers