Role of extracellular vesicle miRNAs in preeclampsia
Preeclampsia is a multi-system hypertensive disorder of pregnancy that is caused by placental dysfunction. The placenta releases extracellular vesicles (EVs) into the maternal circulation from early pregnancy all the way to term as part of its normal function. These EVs have proteins on the surface and contain genetic cargo, capable of altering maternal cellular function. It is known that the release, protein and genetic content of EVs is altered in preeclampsia. We have optimised an ex-vivo placental perfusion technique that permits isolation of trophoblast EVs. We have isolated EVs from normal and preeclampsia subjected these to proteomic and sequencing analysis. It is apparent that there are significant differences in miRNA and other non-coding RNA between EVs from normal and PE placentae. These differences have been validated by RT-PCR. We now wish to investigate the downstream cellular effects of the miRNAs/non-coding sequences, in cell models (endothelial, hepatic etc.) using transfected HEK293 cells. KEK293 cells constitutively produce exosomes. The transfected HEK293 cell will produce exosomes enriched for the RNA species of interest and allow specific miRNA effects to be determined using deep sequencing and proteomics analyses of the target cell. Analysis will require the candidate to be trained in bioinformatics approaches.
Simultaneously, we will interrogate a cohort of clinical samples for circulating miRNAs and investigate their role as a potential biomarker of placental function/disease. The NDWRH sits within the Women’s Centre at the John Radcliffe hospital and delivers 8000 women per year.